Algorithms & Data Structures

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Exercise sheet 2

Departement of Computer Science Markus Püschel, David Steurer 28. September 2020

HS 20

Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Exercise Class (Room & TA):	
Submitted by:	
Peer Feedback by:	
Points:	

The solutions for this sheet are submitted at the beginning of the exercise class on October 5th.

Exercises that are marked by * are challenge exercises. They do not count towards bonus points.

Exercise 2.1 Bounding an inductive sequence (1 point).

Consider a sequence of natural numbers $(a(n))_{n\in\mathbb{N}_0}$ that is defined by

$$a(0) = 1,$$
 $a(1) = 2,$ $a(n) = 2a(n-1) + 3a(n-2)$ for $n \ge 2$.

In this exercise, we will show that this sequence grows exponentially fast.

- a) Use induction to show that for all $n \ge 4$, we have $a(n) \ge e^n$.
- b) Show that for all $n \geq 0$, $a(n) \leq \mathcal{O}(3^n)$.
- c) Suppose that we redefine the starting values of the sequence, i.e. that for some $b, b' \in \mathbb{N}$, $(a(n))_{n \in \mathbb{N}}$ is given by

$$a(0) = b,$$
 $a(1) = b',$ $a(n) = 2a(n-1) + 3a(n-2)$ for $n \ge 2$.

Show that for any choices of $b, b' \in \mathbb{N}$ we still have $a(n) \leq \mathcal{O}(3^n)$ for all $n \geq 0$.

Exercise 2.2 *Iterative squaring.*

In this exercise you are going to develop an algorithm to compute powers a^n , with $a \in \mathbb{Z}$ and $n \in \mathbb{N}$, efficiently. For this exercise, we will treat multiplication of two integers as a single elementary operation, i.e., for $a,b \in \mathbb{Z}$ you can compute $a \cdot b$ using one operation.

- a) Assume that n is even, and that you already know an algorithm $A_{n/2}(a)$ that efficiently computes $a^{n/2}$, i.e., $A_{n/2}(a)=a^{n/2}$. Given the algorithm $A_{n/2}$, design an efficient algorithm $A_n(a)$ that computes a^n .
- b) Let $n=2^k$, for $k \in \mathbb{N}_0$. Find an algorithm that computes a^n efficiently. Describe your algorithm using pseudo-code.

- c) Determine the number of elementary operations (i.e., integer multiplications) required by your algorithm for part b) in \mathcal{O} -notation. You may assume that bookkeeping operations don't cost anything. This includes handling of counters, computing n/2 from n, etc.
- d) Let $\operatorname{Power}(a, n)$ denote your algorithm for the computation of a^n from part b). Prove the correctness of your algorithm via mathematical induction for all $n \in \mathbb{N}$ that are powers of two.

In other words: show that Power $(a, n) = a^n$ for all $n \in \mathbb{N}$ of the form $n = 2^k$ for some $k \in \mathbb{N}_0$.

*e) Design an algorithm that can compute a^n for a general $n \in \mathbb{N}$, i.e., n does not need to be a power of two.

Hint: Generalize the idea from part a) to the case where n is odd, i.e., there exists a $k \in \mathbb{N}$ such that n = 2k + 1.

*f) Prove correctness of your algorithm in e) and determine the number of elementary operations in \mathcal{O} -Notation. As before, you may assume that bookkeeping operations don't cost anything.

Exercise 2.3 *O-Notation.*

- a) Write the following in the asymptotic \mathcal{O} -notation. Your answer should be simplified as much as possible. Unless otherwise stated, we assume $N = \mathbb{N} = \{1, 2, 3, \dots\}$. You do not need to check that the involved functions take values in \mathbb{R}^+ .
 - 1) $5n^3 + 40n^2 + 100$.
 - 2) $2n \log_3 n^4$ with $N = \{2, 3, 4, \ldots\}$.
- b) Prove that if $f_1(x), f_2(x) \leq \mathcal{O}(g(x))$, then $f_1(x) + f_2(x) \leq \mathcal{O}(g(x))$.
- c) Let $f_1(x)$, $f_2(x)$, g(x) > 0. Prove or disprove the following.
 - 1) If $f_1(x), f_2(x) \le \mathcal{O}(g(x))$ then $\frac{f_1(x)}{f_2(x)} \le \mathcal{O}(1)$.
 - 2) If $f_1(x) \leq \mathcal{O}(g(x))$ and $f_2(x) \leq \mathcal{O}(\frac{1}{g(x)})$, then $f_1(x)f_2(x) \leq \mathcal{O}(1)$.

Exercise 2.4 Towers of Hanoi (2 points).

In this exercise you should design a recursive divide-and-conquer algorithm for solving the *Tower of Hanoi* puzzle. The puzzle consists of three rods A, B and C, and n disks of different sizes, which we number from 1 (smallest) to n (largest). The disks can slide onto any rod. The puzzle starts with all the disks stacked in ascending order (largest on bottom, smallest on top) on rod A (see Figure 1).

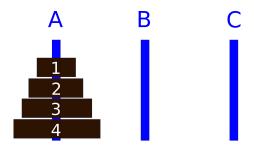


Figure 1: Initial state of the Tower of Hanoi game for n = 4.

Now, the goal is to move all the disks to rod C. When moving the disks the following rules must be obeyed:

- 1. Only one disk can be moved at a time.
- 2. Each move consists of taking the uppermost disk from one of the stacks and placing it on top of another stack or an empty rod.
- 3. No larger disk may be placed on a smaller disk.
- a) Develop an algorithm that solves the problem for n = 1.
- b) Assume that you have an algorithm Move(source, target, spare) that can move n-1 disks from a source rod to a target rod using a spare rod and use it to solve the puzzle with n disks.
- c) Make use of the insights you gained in a) and b) in order to complete the pseudo-code of SolveHanoi. Calling SolveHanoi(A, C, B, n) should solve the puzzle.

```
Algorithm 1 SolveHanoi(source, target, spare, n)

if ... then

SolveHanoi( ... , ... , ... , n-1)

Move the uppermost disk from ... to ...

SolveHanoi( ... , ... , ... , n-1)
```

- d) Proof the correctness of SolveHanoi(A, C, B, n) for all $n \in \mathbb{N}$ by induction.
- e) How many moves are performed by SolveHanoi(A, C, B, n) in order to solve the puzzle?

Hint: Let T_n denote the number of moves required by SolveHanoi(A, C, B, n) and T_{n-1} the number of moves required by SolveHanoi(*, *, *, n-1) (where * is a placeholder). Think about how T_n and T_{n-1} relate to each other. The relationship between T_n and T_{n-1} is called a *recurrence relation*.