
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 28. September 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 2 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 5th.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 2.1 Bounding an inductive sequence (1 point).

Consider a sequence of natural numbers (a(n))n∈N0 that is de�ned by

a(0) = 1, a(1) = 2, a(n) = 2a(n− 1) + 3a(n− 2) for n ≥ 2.

In this exercise, we will show that this sequence grows exponentially fast.

a) Use induction to show that for all n ≥ 4, we have a(n) ≥ en.

b) Show that for all n ≥ 0, a(n) ≤ O(3n).

c) Suppose that we rede�ne the starting values of the sequence, i.e. that for some b, b′ ∈ N, (a(n))n∈N
is given by

a(0) = b, a(1) = b′, a(n) = 2a(n− 1) + 3a(n− 2) for n ≥ 2.

Show that for any choices of b, b′ ∈ N we still have a(n) ≤ O(3n) for all n ≥ 0.

Exercise 2.2 Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers an, with a ∈ Z and n ∈ N, ef-
�ciently. For this exercise, we will treat multiplication of two integers as a single elementary operation,
i.e., for a, b ∈ Z you can compute a · b using one operation.

a) Assume that n is even, and that you already know an algorithm An/2(a) that e�ciently computes
an/2, i.e., An/2(a) = an/2. Given the algorithm An/2, design an e�cient algorithm An(a) that
computes an.

b) Let n = 2k, for k ∈ N0. Find an algorithm that computes an e�ciently. Describe your algorithm
using pseudo-code.

c) Determine the number of elementary operations (i.e., integer multiplications) required by your algo-
rithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost anything.
�is includes handling of counters, computing n/2 from n, etc.

d) Let Power(a, n) denote your algorithm for the computation of an from part b). Prove the correctness
of your algorithm via mathematical induction for all n ∈ N that are powers of two.

In other words: show that Power(a, n) = an for all n ∈ N of the form n = 2k for some k ∈ N0.
∗e) Design an algorithm that can compute an for a general n ∈ N, i.e., n does not need to be a power

of two.

Hint: Generalize the idea from part a) to the case where n is odd, i.e., there exists a k ∈ N such that
n = 2k + 1.

∗f) Prove correctness of your algorithm in e) and determine the number of elementary operations in
O-Notation. As before, you may assume that bookkeeping operations don’t cost anything.

Exercise 2.3 O-Notation.

a) Write the following in the asymptotic O-notation. Your answer should be simpli�ed as much as
possible. Unless otherwise stated, we assumeN = N = {1, 2, 3, . . . }. You do not need to check that
the involved functions take values in R+.

1) 5n3 + 40n2 + 100.

2) 2n log3 n
4 with N = {2, 3, 4, . . .}.

b) Prove that if f1(x), f2(x) ≤ O(g(x)), then f1(x) + f2(x) ≤ O(g(x)).

c) Let f1(x), f2(x), g(x) > 0. Prove or disprove the following.

1) If f1(x), f2(x) ≤ O(g(x)) then f1(x)
f2(x)

≤ O(1).

2) If f1(x) ≤ O(g(x)) and f2(x) ≤ O(1
g(x)), then f1(x)f2(x) ≤ O(1).

Exercise 2.4 Towers of Hanoi (2 points).

In this exercise you should design a recursive divide-and-conquer algorithm for solving the Tower of
Hanoi puzzle. �e puzzle consists of three rods A,B and C , and n disks of di�erent sizes, which we
number from 1 (smallest) to n (largest). �e disks can slide onto any rod. �e puzzle starts with all the
disks stacked in ascending order (largest on bo�om, smallest on top) on rod A (see Figure 1).

Figure 1: Initial state of the Tower of Hanoi game for n = 4.

2

Now, the goal is to move all the disks to rod C . When moving the disks the following rules must be
obeyed:

1. Only one disk can be moved at a time.

2. Each move consists of taking the uppermost disk from one of the stacks and placing it on top of
another stack or an empty rod.

3. No larger disk may be placed on a smaller disk.

a) Develop an algorithm that solves the problem for n = 1.

b) Assume that you have an algorithm Move(source, target, spare) that can move n − 1 disks
from a source rod to a target rod using a spare rod and use it to solve the puzzle with n disks.

c) Make use of the insights you gained in a) and b) in order to complete the pseudo-code of SolveHanoi.
Calling SolveHanoi(A, C , B, n) should solve the puzzle.

Algorithm 1 SolveHanoi(source, target, spare, n)

if ... then

SolveHanoi(... , ... , ... , n− 1)

Move the uppermost disk from ... to ...

SolveHanoi(... , ... , ... , n− 1)

d) Proof the correctness of SolveHanoi(A, C , B, n) for all n ∈ N by induction.

e) How many moves are performed by SolveHanoi(A, C , B, n) in order to solve the puzzle?

Hint: LetTn denote the number ofmoves required by SolveHanoi(A,C ,B,n) andTn−1 the number
of moves required by SolveHanoi(∗, ∗, ∗, n − 1) (where ∗ is a placeholder). �ink about how Tn

and Tn−1 relate to each other. �e relationship between Tn and Tn−1 is called a recurrence relation.

3

